
WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

AMD-V™ Nested Paging

Issue Date: July, 2008 Revision: 1.0

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

© 2008 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with

Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no

representations or warranties with respect to the accuracy or

completeness of the contents of this publication and reserves the right

to make changes to specifications and product descriptions at any time

without notice. No license, whether express, implied, arising by

estoppel or otherwise, to any intellectual property rights is granted by

this publication. Except as set forth in AMD’s Standard Terms and

Conditions of Sale, AMD assumes no liability whatsoever, and disclaims

any express or implied warranty, relating to its products including, but

not limited to, the implied warranty of merchantability, fitness for a

particular purpose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted

for use as components in systems intended for surgical implant into

the body, or in other applications intended to support or sustain life, or

in any other application in which the failure of AMD’s product could

create a situation where personal injury, death, or severe property or

environmental damage may occur. AMD reserves the right to

discontinue or make changes to its products at any time without

notice.

Trademarks

AMD, the AMD arrow logo, AMD Opteron, AMD Virtualization, and combinations

thereof, and AMD-V are trademarks of Advanced Micro Devices, Inc. Other product

names are used in this publication for informational purposes only and may be

trademarks of their respective companies.

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

Executive Summary

Operating systems use processor paging to isolate the address space
of its processes and to efficiently utilize physical memory. Paging is the

process of converting a process-specific linear address to a system
physical address. When a processor is in paged mode, which is the

case for modern operating systems, paging is involved in every data
and instruction access. x86 processors utilize various hardware

facilities to reduce overheads associated with paging. However, under

virtualization, where the guest’s view of physical memory is different
from system’s view of physical memory, a second level of address

translation is required to convert guest physical addresses to machine
addresses. To enable this additional level of translation, the hypervisor

must virtualize processor paging. Current software-based paging
virtualization techniques such as shadow-paging incur significant

overheads, which result in reduced virtualized performance, increased
CPU utilization and increased memory consumption.

Continuing the leadership in virtualization architecture and

performance, AMD64 Quad-Core processors are the first x86
processors to introduce hardware support for a second or nested level

of address translation. This feature is a component of AMD
Virtualization technology (AMD-V™) and referred to as Rapid

Virtualization Indexing (RVI) or nested paging. Under nested paging,

the processor utilizes nested page tables, which are set up by the
hypervisor, to perform a second level address translation. Nested

Paging reduces the overheads found in equivalent shadow paging
implementations.

This whitepaper discusses the existing software-based paging

virtualization solutions and their associated performance overheads. It
then introduces AMD-V™ Rapid Virtualization Indexing technology –

referred to as nested paging within this publication - highlights its
advantages and demonstrates the performance uplift that may be seen

with nested paging.

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

Table of Contents:

1. Introduction .. 5

2. System Virtualization Basics .. 5
3. x86 Address Translation Basics .. 6

4. Virtualizing x86 paging ... 8
4.1 Software techniques for virtualizing address translation 9

4.2 AMD-V™ Nested Page Tables (NPT) 11
4.2.1 Details .. 12

4.2.2 Cost of a Page Walk under Nested Paging 13
4.2.3 Using Nested Paging ... 14

4.2.4 Memory savings with NPT .. 14
4.2.5 Impact of Page Size on Nested Paging Performance 15

4.2.6 Micro-architecture Support for Improving Nested Paging
Performance ... 15

4.2.7 Address Space IDs .. 16

4.2.8 Nested Paging Benchmarks .. 17
5 Conclusion .. 19

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

1. Introduction

System virtualization is the abstraction and pooling of resources on a
platform. This abstraction decouples software and hardware and

enables multiple operating system images to run concurrently on a
single physical platform without interfering with each other.

Virtualization can increase utilization of computing resources by

consolidating workloads running on many physical machines into
virtual machines running on a single physical machine. This

consolidation can dramatically reduce power consumption and floor
space requirements in the data center. Virtual machines can be

provisioned on-demand, replicated and migrated using a centralized

management interface.

Beginning with 64-bit AMD Opteron™ Rev-F processors, AMD has
provided processor extensions to facilitate development of more

efficient, secure and robust software for system virtualization. These
extensions, collectively called AMD Virtualization™ or AMD-V™

technology, remove the overheads associated with software-only
virtualization solutions and attempt to reduce the performance gap

between virtualized and non-virtualized systems.

2. System Virtualization Basics

To allow multiple operating systems to run on the same physical
platform, a platform layer implemented in software decouples the

operating system from the underlying hardware. This layer is called
the hypervisor. In context of system virtualization, the operating

system being virtualized is referred to as guest.

To properly virtualize and isolate a guest, the hypervisor must control
or mediate all privileged operations performed by the guest. The

hypervisor can accomplish this using various techniques. The first
technique is called para-virtualization, where the guest source code is

modified to cooperate with the hypervisor when performing privileged
operations. The second technique is called binary translation, where at

run time the hypervisor transparently replaces privileged operations in
the guest with operations that allow the hypervisor to control and

emulate those operations. The third method is hardware-assisted

virtualization, where the hypervisor uses processor extensions such
AMD-V to intercept and emulate privileged operations in the guest. In

certain cases AMD-V technology allows the hypervisor to specify how

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

the processor should handle privileged operations in guest itself

without transferring control to the hypervisor.

A hypervisor using binary translation or hardware assisted
virtualization must provide the illusion to the guest that the guest is

running on physical hardware. For example, when the guest uses
processor’s paging support for address translation, the hypervisor

must ensure that the guest observes the equivalent behavior it would
observe on non-virtualized hardware.

3. x86 Address Translation Basics

A virtual address is the address a program uses to access data and

instructions. Virtual address is comprised of segment and offset fields.
The segment information is used to determine protection information

and starting address of segment. Segment translation cannot be
disabled, but operating systems generally use flat segmentation where

all segments are mapped to the entire physical address space. Under
flat segmentation the virtual address effectively becomes the linear

address. In this whitepaper we will use linear and virtual address
interchangeably.

If paging is enabled, the linear address is translated to a physical

address using processor paging hardware. To use paging, the
operating system creates and manages a set of page tables (See

figure 1). The page table walker or simply the page walker,

implemented in processor hardware, performs address translation
using these page tables and various bit fields in the linear address.

Figure 2 shows the high level algorithm used by the page walker for
address translation.

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

Linear/Virtual Address

Figure 1: 4KB page tables in long mode

Figure 2: Linear/Virtual to physical address translation algorithm

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

During the page walk, the page walker encounters physical addresses

in CR3 register and in page table entries which point to the next level
of the walk. The page walk ends when the data or leaf page is

reached.

Address translation is a very memory intensive operation because the
page walker must access the memory hierarchy many times. To

reduce this overhead, AMD processors automatically store recent
translations in an internal translation look-aside buffer (TLB). At every

memory reference, the processor first checks the TLB to determine if
the required translation is already cached; if it is cached, the processor

uses that translation; otherwise page tables are walked, the resulting
translation is saved in the TLB and the instruction is executed.

Operating systems are required to cooperate with the processor to
keep the TLB consistent with page tables in memory. For example,

when removing an address translation, the operating system must
request the processor to invalidate the TLB entry associated with that

translation. On SMP systems where an operating system may share
page tables between processes running on multiple processors, the

operating system must ensure that TLB entries on all processors
remain consistent. When removing a shared translation, operating

system software should invalidate the corresponding TLB entry on all
the processors.

The operating system updates the page table’s base pointer (CR3)

during a context switch. A CR3 change establishes a new set of
translations and therefore the processor automatically invalidates TLB

entries associated with the previous context.

The processor sets accessed and dirty bits in the page tables during

memory accesses. The ‘accessed’ bit is set in all levels of the page
table when the processor uses that translation to read or write

memory. The ‘dirty’ bit is set in the PTE when the processor writes to
the memory page mapped by that PTE.

4. Virtualizing x86 paging

To provide protection and isolation between guests and hypervisor, the

hypervisor must control address translation on the processor by

essentially enforcing another level of address translation when guests

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

are active. This additional level of translation maps the guest’s view of

physical memory to the system’s view of physical memory.

With para-virtualized guests, the hypervisor and the guest can utilize
para-virtual interfaces to reduce hypervisor complexity and overhead

in virtualizing x86 paging. However for unmodified guests, the
hypervisor must completely virtualize x86 address translation. This

could incur significant overheads which we discuss in following
sections.

4.1 Software techniques for virtualizing address

translation

Software-based techniques maintain a shadow version of page table
derived from guest page table (gPT). When the guest is active, the

hypervisor forces the processor to use the shadow page table (sPT) to
perform address translation. The sPT is not visible to the guest.

To maintain a valid sPT the hypervisor must keep track of the state of

gPT. This include modifications by the guest to add or remove
translation in the gPT, guest versus hypervisor induced page faults

(defined below), accessed and dirty bits in sPT; and for SMP guests,
consistency of address translation on processors.

Software can use various techniques to keep the sPT and gPT
consistent. One of the techniques is write-protecting the gPT. In this

technique the hypervisor write-protects all physical pages that
constitute the gPT. Any modification by the guest to add a translation

results in a page fault exception. On a page fault exception, the
processor control is transferred to the hypervisor so it can emulate the

operation appropriately. Similarly, the hypervisor gets control when
the guest edits gPT to remove a translation; the hypervisor removes

the translation from the gPT and updates the sPT accordingly.

A different shadow paging technique does not write-protect gPT but
instead depends on processor’s page-fault behavior and on guest

adhering to TLB consistency rules. In this technique, sometimes
referred to as Virtual TLB, the hypervisor lets the guest add new

translations to gPT without intercepting those operations. Then later

when the guest accesses an instruction or data which results in the
processor referencing memory using that translation, the processor

page faults because that translation is not present in sPT just yet. The
page fault allows the hypervisor to intervene; it inspects the gPT to

add the missing translation in the sPT and executes the faulting

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

instruction. Similarly when the guest removes a translation, it

executes INVLPG to invalidate that translation in the TLB. The
hypervisor intercepts this operation; it then removes the

corresponding translation in sPT and executes INVLPG for the removed
translation.

Both techniques result in large number of page fault exceptions. Many

page faults are caused due to normal guest behavior; such those as a
result of accessing pages that have been paged out to the storage

hierarchy by the guest operating system. We call such faults guest-
induced page faults and they must be intercepted by the hypervisor,

analyzed, and then reflected into the guest, which is a significant
overhead when compared to native paging. Page faults due to shadow

paging are called hypervisor-induced page faults. To distinguish
between these two faults, the hypervisor traverses the guest and

shadow page tables, which incurs significant software overheads.

When a guest is active, the page walker sets the accessed and dirty

bits in the sPT. But because the guest may depend on proper setting
of these bits in gPT, the hypervisor must reflect them back in the gPT.

For example, the guest may use these bits to determine which pages
can be moved to the hard disk to make room for new pages.

When the guest attempts to schedule a new process on the processor,

it updates processor’s CR3 register to establish the gPT corresponding
to the new process. The hypervisor must intercept this operation,

invalidate TLB entries associated with the previous CR3 value and set
the real CR3 value based on the corresponding sPT for the new

process. Frequent context switches within the guest could result in
significant hypervisor overheads.

Shadow paging can incur significant additional memory and
performance overheads with SMP guests. In an SMP guest, the same

gPT instance can be used for address translation on more than one
processor. In such a case the hypervisor must either maintain sPT

instances that can be used at each processor or share the sPT between
multiple virtual processors. The former results in high memory

overheads; the latter could result in high synchronization overheads.

It is estimated that for certain workloads shadow paging can account
for up to 75% of overall hypervisor overhead.

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

 Figure 3: Guest and shadow page tables (showing two-level paging)

4.2 AMD-V™ Nested Page Tables (NPT)

To avoid the software overheads under shadow paging, AMD64 Quad-
Core processors add Nested Paging to the hardware page walker.

Nested paging uses an additional or nested page table (NPT) to
translate guest physical addresses to system physical addresses and

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

leaves the guest in complete control over its page tables. Unlike

shadow paging, once the nested pages are populated, the hypervisor
does not need to intercept and emulate guest’s modification of gPT.

Nested paging removes the overheads associated with shadow paging.

However because nested paging introduces an additional level of
translation, the TLB miss cost could be larger.

4.2.1 Details

Under nested paging both guest and the hypervisor have their own
copy of the processor state affecting paging such as the CR0, CR3,

CR4, EFER and PAT.

The gPT maps guest linear addresses to guest physical addresses.

Nested page tables (nPT) map guest physical addresses to system
physical addresses.

Guest and nested page tables are set up by the guest and hypervisor

respectively. When a guest attempts to reference memory using a
linear address and nested paging is enabled, the page walker performs

a 2-dimensional walk using the gPT and nPT to translate the guest
linear address to system physical address. See figure 4.

When the page walk is completed, a TLB entry containing the

translation from guest linear address to system physical address is
cached in the TLB and used on subsequent accesses to that linear

address.

AMD processors supporting nested paging use the same TLB facilities

to map from linear to system physical addresses, whether the
processor is in guest or in host (or hypervisor) mode. When the

processor is in guest mode, TLB maps guest linear addresses to
system physical addresses. When processor is in host mode, the TLB

maps host linear addresses to system physical addresses.

In addition, AMD processors supporting nested paging maintain a
Nested TLB which caches guest physical to system physical

translations to accelerate nested page table walks. Nested TLB
exploits the high locality of guest page table structures and has a high

hit rate.

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

gPML4E

PML4 Offset Physical Page Off.PT OffsetPD OffsetPDP Offset

11 0122021293038394763 48

Guest Virtual

gCR3

51 12

gPDPE

gPDE

gPTE

gData

Page-Map

Level-4 Table

Page Directory

Pointer Table

Page Directory

Table

Page

Table

Guest 4KB

memory page

4KB pages

addressed by

guest physical address

PML4 Offset Physical Page Off.PT OffsetPD OffsetPDP Offset

11 0122021293038394763 48

nPML4E

nCR3

51 12

nPDPE

nPDE

nPTE

gPML4E

Page-Map

Level-4 Table

Page Directory

Pointer Table

Page Directory

Table

Page

Table

Guest 4KB

memory page

4KB pages

addressed by

system physical address

Nested

walk

Nested

walk

Nested

walk

Nested

walk

Nested

walk

Nested

walk

Figure 4: Translating guest linear address to system physical address
using nested page tables

4.2.2 Cost of a Page Walk under Nested Paging

A TLB miss under nested paging could have a higher cost than a TLB
miss under non-nested paging. This is because under nested paging,

the page walker must not only walk gPT but also simultaneously walk
nPT to translate the guest physical addresses encountered during

guest page table walk (such as gCR3 and gPT entries) to system
physical addresses.

For example, a 4-level guest page table walk could invoke the nested

page walker 5 times, once for each guest physical address

encountered and once for the final translation of the GP of the datum
itself. Each nested page walk can require up to 4 cacheable memory

accesses to determine the guest physical to system physical mapping

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

and one more memory access to read the entry itself. In such a case

a TLB miss cost can increase from 4 memory references in non-nested
paging to 24 in nested paging unless caching is done. Figure 5 shows

the steps taken by the page walker with 4 levels in both guest and
nested page tables.

Figure 5: Address translation with nested paging. GPA is guest physical

address; SPA is system physical address; nL is nested level; gL is

guest level

4.2.3 Using Nested Paging

Nested paging is a feature intended for hypervisor’s use. The guest

cannot observe any difference (except performance) while running
under a hypervisor using nested paging. Nested paging does not

require any changes in guest software.

Nesting paging is an optional feature and not available in all
implementations of processors supporting AMD-V technology. Software

can use the CPUID instruction to determine if nested paging is
supported on that processor implementation.

4.2.4 Memory savings with NPT

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

Unlike shadow-paging, which requires the hypervisor to maintain an

sPT instance for each gPT, a hypervisor using nested paging can set up
a single instance of nPT to map the entire guest physical address

space. Since guest memory is compact, the nPT should typically
consume considerably less memory than an equivalent shadow-paging

implementation.

With nested paging, the hypervisor can maintain a single instance of
nPT which can be used simultaneously at one more processor in an

SMP guest. This is much more efficient than shadow paging
implementations where the hypervisor either incurs a memory

overhead to maintain per virtual processor sPT or incurs
synchronization overheads resulting from use of shared sPT.

4.2.5 Impact of Page Size on Nested Paging Performance

Besides other factors, address translation performance is reduced
when there is an increase in TLB miss cost. Other things being equal,

TLB miss cost (under nested and non-nested paging) decreases if
fewer pages need to be walked. Large page sizes reduce page levels

needed for address translation.

To improve nested paging performance, a hypervisor can chose to
populate nPT with large page sizes. Nested page table sizes can be

different for each page in each guest and can be changed during guest
execution. AMD64 Quad-Core processors support 4KB, 2MB, and 1GB

page sizes.

Like large nested page size, large guest page size also reduces TLB

miss cost. Many workloads such as database workloads typically use
large pages and should perform well under nested paging.

An indirect benefit of large pages is TLB efficiency. With larger pages,

each TLB entry covers a larger range of linear to physical address
translation; effectively increasing TLB capacity and reducing page walk

frequency.

4.2.6 Micro-architecture Support for Improving Nested

Paging Performance

To reduce page walk overheads, AMD64 processors maintain a fast
internal Page Walk Cache (PWC) for memory referenced by frequently

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

used page table entries. The PWC entries are tagged with physical

addresses and prevent a page entry reference from accessing the
memory hierarchy.

With nested paging, the significance of the PWC becomes even more

important. AMD processors supporting nested paging can cache guest
page table as well as nested page table entries. This would convert

the unconditional memory hierarchy access for data referenced by
both guest and nested page table entries to likely PWC hits. Reuse of

page table entries at the top most page level is the highest while that
at the lowest level is the least. PWC takes these characteristics into

consideration when caching entries.

As we discussed previously, the TLB plays a major role in reducing
address translation overheads. When TLB capacity increases, the

number of costly page walks needed decreases. The AMD “Barcelona”

family of processors are designed to cache up to 48 TLB entries in
their L1 Data TLB for any page size; 4KB, 2MB or 1GB pages. They

can also cache 512 4KB TLB entries or 128 2M entries in their L2 TLB.
A TLB with large capacity improves performance under nested as well

as shadow paging.

Similar to the regular TLB which caches linear address to system
address translations, AMD processors supporting nested paging

support a Nested TLB (NTLB) to cache guest physical to system
physical translations. The goal of NTLB is to reduce the average

number of page entry references during a nested walk.

The TLB, PWC and NTLB work together to improve nested paging
performance without requiring any software changes in guest or the

hypervisor.

4.2.7 Address Space IDs

Starting 64-bit AMD Opteron Rev-F processors support Address Space
IDs (ASIDs) to dynamically partition the TLB. The hypervisor assigns a

unique ASID value to each guest scheduled to run on the processor.
During a TLB lookup, the ASID value of the currently active guest is

matched against the ASID tag in the TLB entry and the linear page
frame numbers are matched for a potential TLB hit. Thus TLB entries

belonging to different guests and to the hypervisor can coexist without
causing incorrect address translations, and these TLB entries can

persist during context switches. Without ASIDs, all TLB entries must

be flushed before a context switch and refilled later.

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

Use of ASIDs allows the hypervisor to make efficient use of processor’s
TLB capacity to improve guest performance under nested paging.

Figure 6: Address Space ID (ASID)

4.2.8 Nested Paging Benchmarks

This whitepaper includes benchmark results collected from an early

revision of the AMD “Barcelona” family of processors and early
hypervisor implementations. It is possible that as hypervisors get

optimized for nesting paging, the overall performance will improve.
Furthermore, the performance may improve with enhancements to

micro architecture. As benchmark results from later revisions of
AMD64 Quad-Core processors and later hypervisor versions become

available, they will be added or linked to this document.

The benchmarks discussed here were collected on systems with the
following configuration:

Processors: 2-socket, 2.0GHz/1800MHz-NB Barcelona (Model 2350), 95W.

Memory: 32GB of 4GB DDR2-667MHz.
HBA: QLA2432 (dual-port PCIe 2Gb Fiber) HBA: 1 port used.

Disk Array: MSA1500, 1 controller, 1 fiber connection, 512MB cache. 15
drives 15K rpm SCSI 73GB disks.

Figure 7 shows benchmark data collected with and without nested

paging using an experimental build of VMware ESX. With nested
paging, the performance increased by approximately 14 and 58

percent for SQL DB Hammer and MS Terminal Services workloads
respectively.

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

Figure 7: Performance with and without nested paging with an

experimental build of VMware ESX hypervisor on AMD64 Quad-Core
Model 2350

Figure 8 shows Oracle 10G OLTP with and without nested paging with

RHEL 4.4 running under Xen 3.1. With nested paging, the performance
increased by approximately 94%. With para-virtualized (PV) drivers for

NIC and storage, the performance increased by 249%.

WHITE PAPER AMD-V™ Nested Paging

 Advanced Micro Devices, Inc.

Figure 8: Oracle 10G OLTP performance with and without nested

paging with RHEL 5.5 under Xen on AMD64 Quad-Core Model 2350.

5 Conclusion

Nested Paging removes the virtualization overheads associated with

traditional software-based shadow paging algorithms. Together with
other architectural and micro-architectural enhancements in AMD64

Quad-core processors, Nested Paging helps deliver performance
improvements, specifically for memory intensive workloads with high

context-switch frequency. Servers based on these processors can
provide outstanding scalability, leading edge performance-per-watt,

high consolidation ratios and great headroom for server workloads.

