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Executive Summary 
 

Operating systems use processor paging to isolate the address space 
of its processes and to efficiently utilize physical memory. Paging is the 

process of converting a process-specific linear address to a system 
physical address. When a processor is in paged mode, which is the 

case for modern operating systems, paging is involved in every data 
and instruction access. x86 processors utilize various hardware 

facilities to reduce overheads associated with paging. However, under 

virtualization, where the guest’s view of physical memory is different 
from system’s view of physical memory, a second level of address 

translation is required to convert guest physical addresses to machine 
addresses. To enable this additional level of translation, the hypervisor 

must virtualize processor paging. Current software-based paging 
virtualization techniques such as shadow-paging incur significant 

overheads, which result in reduced virtualized performance, increased 
CPU utilization and increased memory consumption. 

 
Continuing the leadership in virtualization architecture and 

performance, AMD64 Quad-Core processors are the first x86 
processors to introduce hardware support for a second or nested level 

of address translation. This feature is a component of AMD 
Virtualization technology (AMD-V™) and  referred to as Rapid 

Virtualization Indexing (RVI) or  nested paging. Under nested paging, 

the processor utilizes nested page tables, which are set up by the 
hypervisor, to perform a second level address translation. Nested 

Paging reduces the overheads found in equivalent shadow paging 
implementations.  

 
This whitepaper discusses the existing software-based paging 

virtualization solutions and their associated performance overheads. It 
then introduces AMD-V™ Rapid Virtualization Indexing technology – 

referred to as nested paging  within this publication - highlights its 
advantages and demonstrates the performance uplift that may be seen 

with nested paging. 
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1. Introduction 

System virtualization is the abstraction and pooling of resources on a 
platform. This abstraction decouples software and hardware and 

enables multiple operating system images to run concurrently on a 
single physical platform without interfering with each other. 

 
Virtualization can increase utilization of computing resources by 

consolidating workloads running on many physical machines into 
virtual machines running on a single physical machine. This 

consolidation can dramatically reduce power consumption and floor 
space requirements in the data center. Virtual machines can be 

provisioned on-demand, replicated and migrated using a centralized 

management interface. 
 

Beginning with 64-bit AMD Opteron™ Rev-F processors, AMD has 
provided processor extensions to facilitate development of more 

efficient, secure and robust software for system virtualization. These 
extensions, collectively called AMD Virtualization™ or AMD-V™ 

technology, remove the overheads associated with software-only 
virtualization solutions and attempt to reduce the performance gap 

between virtualized and non-virtualized systems. 
 

2. System Virtualization Basics 

To allow multiple operating systems to run on the same physical 
platform, a platform layer implemented in software decouples the 

operating system from the underlying hardware. This layer is called 
the hypervisor. In context of system virtualization, the operating 

system being virtualized is referred to as guest. 
 

To properly virtualize and isolate a guest, the hypervisor must control 
or mediate all privileged operations performed by the guest. The 

hypervisor can accomplish this using various techniques. The first 
technique is called para-virtualization, where the guest source code is 

modified to cooperate with the hypervisor when performing privileged 
operations. The second technique is called binary translation, where at 

run time the hypervisor transparently replaces privileged operations in 
the guest with operations that allow the hypervisor to control and 

emulate those operations. The third method is hardware-assisted 

virtualization, where the hypervisor uses processor extensions such 
AMD-V to intercept and emulate privileged operations in the guest. In 

certain cases AMD-V technology allows the hypervisor to specify how 
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the processor should handle privileged operations in guest itself 

without transferring control to the hypervisor. 
 

A hypervisor using binary translation or hardware assisted 
virtualization must provide the illusion to the guest that the guest is 

running on physical hardware. For example, when the guest uses 
processor’s paging support for address translation, the hypervisor 

must ensure that the guest observes the equivalent behavior it would 
observe on non-virtualized hardware. 

 
 

3. x86 Address Translation Basics 

 
A virtual address is the address a program uses to access data and 

instructions. Virtual address is comprised of segment and offset fields. 
The segment information is used to determine protection information 

and starting address of segment. Segment translation cannot be 
disabled, but operating systems generally use flat segmentation where 

all segments are mapped to the entire physical address space.  Under 
flat segmentation the virtual address effectively becomes the linear 

address. In this whitepaper we will use linear and virtual address 
interchangeably. 

 
If paging is enabled, the linear address is translated to a physical 

address using processor paging hardware. To use paging, the 
operating system creates and manages a set of page tables (See 

figure 1). The page table walker or simply the page walker, 

implemented in processor hardware, performs address translation 
using these page tables and various bit fields in the linear address.  

Figure 2 shows the high level algorithm used by the page walker for 
address translation. 
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Linear/Virtual Address

 
Figure 1: 4KB page tables in long mode 

 

 

 
Figure 2: Linear/Virtual to physical address translation algorithm 
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During the page walk, the page walker encounters physical addresses 

in CR3 register and in page table entries which point to the next level 
of the walk. The page walk ends when the data or leaf page is 

reached.  
 

Address translation is a very memory intensive operation because the 
page walker must access the memory hierarchy many times. To 

reduce this overhead, AMD processors automatically store recent 
translations in an internal translation look-aside buffer (TLB). At every 

memory reference, the processor first checks the TLB to determine if 
the required translation is already cached; if it is cached, the processor 

uses that translation; otherwise page tables are walked, the resulting 
translation is saved in the TLB and the instruction is executed.  

 

Operating systems are required to cooperate with the processor to 
keep the TLB consistent with page tables in memory. For example, 

when removing an address translation, the operating system must 
request the processor to invalidate the TLB entry associated with that 

translation. On SMP systems where an operating system may share 
page tables between processes running on multiple processors, the 

operating system must ensure that TLB entries on all processors 
remain consistent. When removing a shared translation, operating 

system software should invalidate the corresponding TLB entry on all 
the processors. 

 
The operating system updates the page table’s base pointer (CR3) 

during a context switch.  A CR3 change establishes a new set of 
translations and therefore the processor automatically invalidates TLB 

entries associated with the previous context.  

 
The processor sets accessed and dirty bits in the page tables during 

memory accesses. The ‘accessed’ bit is set in all levels of the page 
table when the processor uses that translation to read or write 

memory. The ‘dirty’ bit is set in the PTE when the processor writes to 
the memory page mapped by that PTE. 

 

4. Virtualizing x86 paging 

 
To provide protection and isolation between guests and hypervisor, the 

hypervisor must control address translation on the processor by 

essentially enforcing another level of address translation when guests 
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are active. This additional level of translation maps the guest’s view of 

physical memory to the system’s view of physical memory.  
 

With para-virtualized guests, the hypervisor and the guest can utilize 
para-virtual interfaces to reduce hypervisor complexity and overhead 

in virtualizing x86 paging. However for unmodified guests, the 
hypervisor must completely virtualize x86 address translation. This 

could incur significant overheads which we discuss in following 
sections. 

4.1 Software techniques for virtualizing address 

translation 

 

Software-based techniques maintain a shadow version of page table 
derived from guest page table (gPT). When the guest is active, the 

hypervisor forces the processor to use the shadow page table (sPT) to 
perform address translation. The sPT is not visible to the guest.  

 
To maintain a valid sPT the hypervisor must keep track of the state of 

gPT. This include modifications by the guest to add or remove 
translation in the gPT, guest versus hypervisor induced page faults 

(defined below), accessed and dirty bits in sPT; and for SMP guests, 
consistency of address translation on processors.   

 

Software can use various techniques to keep the sPT and gPT 
consistent. One of the techniques is write-protecting the gPT. In this 

technique the hypervisor write-protects all physical pages that 
constitute the gPT. Any modification by the guest to add a translation 

results in a page fault exception. On a page fault exception, the 
processor control is transferred to the hypervisor so it can emulate the 

operation appropriately. Similarly, the hypervisor gets control when 
the guest edits gPT to remove a translation; the hypervisor removes 

the translation from the gPT and updates the sPT accordingly.   
 

A different shadow paging technique does not write-protect gPT but 
instead depends on processor’s page-fault behavior and on guest 

adhering to TLB consistency rules. In this technique, sometimes 
referred to as Virtual TLB, the hypervisor lets the guest add new 

translations to gPT without intercepting those operations. Then later 

when the guest accesses an instruction or data which results in the 
processor referencing memory using that translation, the processor 

page faults because that translation is not present in sPT just yet. The 
page fault allows the hypervisor to intervene; it inspects the gPT to 

add the missing translation in the sPT and executes the faulting 
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instruction. Similarly when the guest removes a translation, it 

executes INVLPG to invalidate that translation in the TLB. The 
hypervisor intercepts this operation; it then removes the 

corresponding translation in sPT and executes INVLPG for the removed 
translation. 

 
Both techniques result in large number of page fault exceptions. Many 

page faults are caused due to normal guest behavior; such those as a 
result of accessing pages that have been paged out to the storage 

hierarchy by the guest operating system. We call such faults guest-
induced page faults and they must be intercepted by the hypervisor, 

analyzed, and then reflected into the guest, which is a significant 
overhead when compared to native paging. Page faults due to shadow 

paging are called hypervisor-induced page faults. To distinguish 
between these two faults, the hypervisor traverses the guest and 

shadow page tables, which incurs significant software overheads. 

 
When a guest is active, the page walker sets the accessed and dirty 

bits in the sPT. But because the guest may depend on proper setting 
of these bits in gPT, the hypervisor must reflect them back in the gPT. 

For example, the guest may use these bits to determine which pages 
can be moved to the hard disk to make room for new pages.  

 
When the guest attempts to schedule a new process on the processor, 

it updates processor’s CR3 register to establish the gPT corresponding 
to the new process. The hypervisor must intercept this operation, 

invalidate TLB entries associated with the previous CR3 value and set 
the real CR3 value based on the corresponding sPT for the new 

process. Frequent context switches within the guest could result in 
significant hypervisor overheads. 

 

Shadow paging can incur significant additional memory and 
performance overheads with SMP guests. In an SMP guest, the same 

gPT instance can be used for address translation on more than one 
processor.  In such a case the hypervisor must either maintain sPT 

instances that can be used at each processor or share the sPT between 
multiple virtual processors. The former results in high memory 

overheads; the latter could result in high synchronization overheads.  
 

It is estimated that for certain workloads shadow paging can account 
for up to 75% of overall hypervisor overhead. 
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 Figure 3: Guest and shadow page tables (showing two-level paging) 
 

 
 

4.2 AMD-V™ Nested Page Tables (NPT) 

To avoid the software overheads under shadow paging, AMD64 Quad-
Core processors add Nested Paging to the hardware page walker.  

Nested paging uses an additional or nested page table (NPT) to 
translate guest physical addresses to system physical addresses and 
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leaves the guest in complete control over its page tables.  Unlike 

shadow paging, once the nested pages are populated, the hypervisor 
does not need to intercept and emulate guest’s modification of gPT.  

 
Nested paging removes the overheads associated with shadow paging. 

However because nested paging introduces an additional level of 
translation, the TLB miss cost could be larger.  

 

4.2.1 Details 

Under nested paging both guest and the hypervisor have their own 
copy of the processor state affecting paging such as the CR0, CR3, 

CR4, EFER and PAT. 

 
The gPT maps guest linear addresses to guest physical addresses. 

Nested page tables (nPT) map guest physical addresses to system 
physical addresses.  

 
Guest and nested page tables are set up by the guest and hypervisor 

respectively. When a guest attempts to reference memory using a 
linear address and nested paging is enabled, the page walker performs 

a 2-dimensional walk using the gPT and nPT to translate the guest 
linear address to system physical address. See figure 4. 

 
When the page walk is completed, a TLB entry containing the 

translation from guest linear address to system physical address is 
cached in the TLB and used on subsequent accesses to that linear 

address. 

 
AMD processors supporting nested paging use the same TLB facilities 

to map from linear to system physical addresses, whether the 
processor is in guest or in host (or hypervisor) mode. When the 

processor is in guest mode, TLB maps guest linear addresses to 
system physical addresses. When processor is in host mode, the TLB 

maps host linear addresses to system physical addresses.  
 

In addition, AMD processors supporting nested paging maintain a 
Nested TLB which caches guest physical to system physical 

translations to accelerate nested page table walks.  Nested TLB 
exploits the high locality of guest page table structures and has a high 

hit rate.  
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Figure 4: Translating guest linear address to system physical address 
using nested page tables 

 
 

 

4.2.2 Cost of a Page Walk under Nested Paging 

 

A TLB miss under nested paging could have a higher cost than a TLB 
miss under non-nested paging. This is because under nested paging, 

the page walker must not only walk gPT but also simultaneously walk 
nPT to translate the guest physical addresses encountered during 

guest page table walk (such as gCR3 and gPT entries) to system 
physical addresses. 

 
For example, a 4-level guest page table walk could invoke the nested 

page walker 5 times, once for each guest physical address 

encountered and once for the final translation of the GP of the datum 
itself.  Each nested page walk can require up to 4 cacheable memory 

accesses to determine the guest physical to system physical mapping 
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and one more memory access to read the entry itself.  In such a case 

a TLB miss cost can increase from 4 memory references in non-nested 
paging to 24 in nested paging unless caching is done.  Figure 5 shows 

the steps taken by the page walker with 4 levels in both guest and 
nested page tables.  

 

 
Figure 5: Address translation with nested paging. GPA is guest physical 

address; SPA is system physical address; nL is nested level; gL is 

guest level 

 

4.2.3 Using Nested Paging 

 
Nested paging is a feature intended for hypervisor’s use. The guest 

cannot observe any difference (except performance) while running 
under a hypervisor using nested paging. Nested paging does not 

require any changes in guest software. 
 

Nesting paging is an optional feature and not available in all 
implementations of processors supporting AMD-V technology. Software 

can use the CPUID instruction to determine if nested paging is 
supported on that processor implementation. 

 

4.2.4 Memory savings with NPT 
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Unlike shadow-paging, which requires the hypervisor to maintain an 

sPT instance for each gPT, a hypervisor using nested paging can set up 
a single instance of nPT to map the entire guest physical address 

space. Since guest memory is compact, the nPT should typically 
consume considerably less memory than an equivalent shadow-paging 

implementation. 
 

With nested paging, the hypervisor can maintain a single instance of 
nPT which can be used simultaneously at one more processor in an 

SMP guest. This is much more efficient than shadow paging 
implementations where the hypervisor either incurs a memory 

overhead to maintain per virtual processor sPT or incurs 
synchronization overheads resulting from use of shared sPT. 

 

4.2.5 Impact of Page Size on Nested Paging Performance 

 

Besides other factors, address translation performance is reduced 
when there is an increase in TLB miss cost. Other things being equal, 

TLB miss cost (under nested and non-nested paging) decreases if 
fewer pages need to be walked.  Large page sizes reduce page levels 

needed for address translation. 
 

To improve nested paging performance, a hypervisor can chose to 
populate nPT with large page sizes. Nested page table sizes can be 

different for each page in each guest and can be changed during guest 
execution. AMD64 Quad-Core processors support 4KB, 2MB, and 1GB 

page sizes. 

 
Like large nested page size, large guest page size also reduces TLB 

miss cost. Many workloads such as database workloads typically use 
large pages and should perform well under nested paging. 

 
An indirect benefit of large pages is TLB efficiency. With larger pages, 

each TLB entry covers a larger range of linear to physical address 
translation; effectively increasing TLB capacity and reducing page walk 

frequency. 
 

4.2.6 Micro-architecture Support for Improving Nested 

Paging Performance 

 

To reduce page walk overheads, AMD64 processors maintain a fast 
internal Page Walk Cache (PWC) for memory referenced by frequently 
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used page table entries. The PWC entries are tagged with physical 

addresses and prevent a page entry reference from accessing the 
memory hierarchy. 

 
With nested paging, the significance of the PWC becomes even more 

important. AMD processors supporting nested paging can cache guest 
page table as well as nested page table entries.  This would convert 

the unconditional memory hierarchy access for data referenced by 
both guest and nested page table entries to likely PWC hits. Reuse of 

page table entries at the top most page level is the highest while that 
at the lowest level is the least. PWC takes these characteristics into 

consideration when caching entries. 
 

As we discussed previously, the TLB plays a major role in reducing 
address translation overheads. When TLB capacity increases, the 

number of costly page walks needed decreases.  The AMD “Barcelona” 

family of processors are designed to cache up to 48 TLB entries in 
their L1 Data TLB for any page size; 4KB, 2MB or 1GB pages.  They 

can also cache 512 4KB TLB entries or 128 2M entries in their L2 TLB. 
A TLB with large capacity improves performance under nested as well 

as shadow paging. 
 

Similar to the regular TLB which caches linear address to system 
address translations, AMD processors supporting nested paging 

support a Nested TLB (NTLB) to cache guest physical to system 
physical translations. The goal of NTLB is to reduce the average 

number of page entry references during a nested walk.  
 

The TLB, PWC and NTLB work together to improve nested paging 
performance without requiring any software changes in guest or the 

hypervisor. 

 

4.2.7 Address Space IDs 

Starting 64-bit AMD Opteron Rev-F processors support Address Space 
IDs (ASIDs) to dynamically partition the TLB. The hypervisor assigns a 

unique ASID value to each guest scheduled to run on the processor. 
During a TLB lookup, the ASID value of the currently active guest is 

matched against the ASID tag in the TLB entry and the linear page 
frame numbers are matched for a potential TLB hit. Thus TLB entries 

belonging to different guests and to the hypervisor can coexist without 
causing incorrect address translations, and these TLB entries can 

persist during context switches. Without ASIDs, all TLB entries must 

be flushed before a context switch and refilled later. 
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Use of ASIDs allows the hypervisor to make efficient use of processor’s 
TLB capacity to improve guest performance under nested paging. 

 
Figure 6: Address Space ID (ASID) 

 
 

4.2.8 Nested Paging Benchmarks 

 
This whitepaper includes benchmark results collected from an early 

revision of the AMD “Barcelona” family of processors and early 
hypervisor implementations. It is possible that as hypervisors get 

optimized for nesting paging, the overall performance will improve. 
Furthermore, the performance may improve with enhancements to 

micro architecture. As benchmark results from later revisions of 
AMD64 Quad-Core processors and later hypervisor versions become 

available, they will be added or linked to this document. 
 

The benchmarks discussed here were collected on systems with the 
following configuration: 

 
Processors:  2-socket, 2.0GHz/1800MHz-NB Barcelona (Model 2350), 95W. 

Memory: 32GB of 4GB DDR2-667MHz. 
HBA: QLA2432 (dual-port PCIe 2Gb Fiber) HBA: 1 port used. 

Disk Array: MSA1500, 1 controller, 1 fiber connection, 512MB cache. 15 
drives 15K rpm SCSI 73GB disks. 

 
Figure 7 shows benchmark data collected with and without nested 

paging using an experimental build of VMware ESX. With nested 
paging, the performance increased by approximately 14 and 58 

percent for SQL DB Hammer and MS Terminal Services workloads 
respectively. 
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Figure 7: Performance with and without nested paging with an 

experimental build of VMware ESX hypervisor on AMD64 Quad-Core 
Model 2350 

 
Figure 8 shows Oracle 10G OLTP with and without nested paging with 

RHEL 4.4 running under Xen 3.1. With nested paging, the performance 
increased by approximately 94%. With para-virtualized (PV) drivers for 

NIC and storage, the performance increased by 249%. 
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Figure 8: Oracle 10G OLTP performance with and without nested 

paging with RHEL 5.5 under Xen on AMD64 Quad-Core Model 2350. 
 

5 Conclusion 

Nested Paging removes the virtualization overheads associated with 

traditional software-based shadow paging algorithms. Together with 
other architectural and micro-architectural enhancements in AMD64 

Quad-core processors, Nested Paging helps deliver performance 
improvements, specifically for memory intensive workloads with high 

context-switch frequency. Servers based on these processors can 
provide outstanding scalability, leading edge performance-per-watt, 

high consolidation ratios and great headroom for server workloads. 


